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Computational details 
 
Defect formation energies were calculated using the standard formalism as described in Refs. 
1 and 2. As an example, the formation energy of 𝑉!

", i.e., the oxygen vacancy (𝑉!) in the charge 
state 𝑞, is given by 

𝐸#$𝑉!
"% = 𝐸$%$$𝑉!

"% − 𝐸$%$(bulk) + 𝜇! + 𝑞𝐸& + ∆", 
where 𝐸$%$$𝑉!

"% and 𝐸$%$(bulk) are the total energies of the supercell containing the 𝑉!
" and the 

bulk (i.e., defect-free) supercell, respectively. The last term, ∆" , is a finite-supercell-size 
correction to 𝐸$%$$𝑉!

"%  accounting for the spurious electrostatic interaction between the 
charged defect and its periodic images,3, 4 and was calculated using the experimental static 
dielectric constant (𝜀' = 11.95).5 The formation of 𝑉!

" involves exchanging an oxygen atom 
and |𝑞| electrons with the atomic and electron reservoirs, whose chemical potentials are 𝜇! and 
𝐸&, respectively. The electron chemical potential (𝐸&), i.e., the Fermi level, is referenced to the 
valence-band maximum (VBM) and ranges over the CaO band gap. The chemical potentials of 
Ca (𝜇()) and O (𝜇!) are referenced to the total energies per atom of their respective elemental 
phase (fcc Ca metal and O2 molecule, respectively). The elemental chemical potentials are 
treated as variables so as to reflect experimental growth conditions for CaO.  
 
In thermodynamic equilibrium, the elemental chemical-potentials are bound by 𝜇(), 𝜇! ≤ 0 
and 𝜇() + 𝜇! = ∆𝐻#(CaO), which prevent the formation of Ca bulk metal and O2 molecules, 
and ensure thermodynamic stability of CaO. The ∆𝐻#(CaO) is the formation enthalpy of CaO 
and calculated to be −6.23 eV, close to the experimental value of −6.58 eV.6 As a result, 𝜇! 
can vary from −6.23 eV (the O-poor limit) to 0 eV (the O-rich limit). In calculating the defect 
formation energies, 𝜇! = −6.23 and 0 eV, are chosen to represent O-poor and O-rich growth 
conditions for CaO, respectively. To relate 𝜇!  to the experimental conditions in terms of 
temperature and oxygen partial pressure, we rely on the ideal-gas model:7 

𝜇! =
*
+
B−𝑇𝑆!! + 𝑅𝑇ln𝑝!!H,                       	

where 𝑆!! is the experimentally measured standard entropy of O2 gas,8 𝑅 the ideal-gas constant, 
𝑝!! the O2 partial pressure, and 𝑇 the temperature. 𝜇! is referenced to *

+
𝐸$%$(O+), i.e., one half 

of the total energy of the O2 molecule at 0 K. We find that experimentally, to obtain 𝜇! =
−6.23 eV, a temperature as high as 3000 K and an oxygen partial pressure as low as 10,*' bar 
are needed, for example. Such a high temperature would be challenging to realize.9  
 
The formation energy of the hydrogen-related defects depends on the hydrogen chemical 
potential (𝜇-). Assuming that hydrogen inside CaO is in equilibrium with H2 molecules in the 
growth or annealing environment, 𝜇- can be defined through the ideal-gas model:  



𝜇- =
*
+
B−𝑇𝑆-! + 𝑅𝑇ln𝑝-!H,                       	

where 𝑆-! is the experimentally measured standard entropy of H2 gas,8 𝑅 the ideal-gas constant, 
and 𝑝-! the H2 partial pressure. 𝜇- is referenced to *

+
𝐸$%$(H+), i.e., one half of the total energy 

of the H2 molecule at 0 K. We considered temperature of 1000 K, and varied 𝑝-! from 10,*' 
to 1 bar; correspondingly, this leads to 𝜇- values in the range −1.67 to −0.68 eV. There exist 
upper bounds of 𝜇-, arising from solubility-limiting phases. This depends on 𝜇!. For 𝜇! =
−6.23 eV (the O-poor limit), the maximum allowed value of 𝜇-  is 0 eV and limited by 
formation of H2 molecules; for 𝜇! = 0 eV (the O-rich limit), the maximum allowed value of 
𝜇- is −1.97 eV and limited by formation of Ca(OH)2. The latter implies that under O-rich 
conditions, exposure to H2 gas should be avoided in order not to cause hydrogenation of CaO 
forming Ca(OH)2.10 
 
The binding energies of [H + 𝑉()], and [2H + 𝑉()]' were obtained as the difference between 
the formation energy of the complexes and the sum of the formation energies of isolated 𝑉()+, 
and H./. They are independent of elemental chemical potentials due to a cancelation of terms. 
 
In thermodynamic equilibrium, the defect concentration is given by 𝑐[X"] =
𝑁01$20 exp S−

3"(5#)
7$8

T, where 𝑁01$20 is the number of sites (per unit volume) at which the defect 
can form.11 This equation shows that in equilibrium, a defect with low formation energy has 
high concentration. Using the calculated defect formation energies, the Fermi level can be 
determined by the charge-neutrality condition, accounting for all charged defects and free 
carriers in the bands.12-15 We obtained the defect concentrations, Fermi-level position, and 
carrier densities using the py-sc-fermi code.14 
 
The PyCDT code was used to generate defect initial structures and postprocess the defect 
calculations.16 To correctly identify the lowest-energy configuration of the interstitial defects 
(Ca. , O. , and H.), a number of trial interstitial sites were examined, and this was done for 
different charge states. Besides, the ShakeNBreak code17, 18 was also used to generate initial 
structures for the most important charged defects, 𝑉()+,, 𝑉!/, and 𝑉!+/. 
 
 
Local geometry of the intrinsic defects in CaO 
 
Here we show the local geometry of the intrinsic defects in their important charge states. 
 

 
 
FIG. S1. Calcium vacancy in the 2− charge state, i.e., 𝑉()+,. The red and cyan balls denote 
oxygen and calcium atoms, respectively (same in the following figures). The VESTA software 
was used for the plot.19 



 

                                           
 
FIG. S2. Oxygen vacancy in the 1+ (left) and 2+ (right) charge states, i.e., 𝑉!/  and 𝑉!+/ , 
respectively. 
 

 
FIG. S3. Oxygen interstitial in the neutral charge state, i.e., O./, which adopts a split-interstitial 
configuration. 
 

                                      
FIG. S4. Hydrogen interstitial in the 1+ (left) and 1− (right) charge states, i.e., H./ and H.,, 
respectively. The light pink ball denotes the hydrogen atom. 
 

 
FIG. S5. Hydrogen substitution on the oxygen site in the 1+ charge state, i.e., H!/. 
 



Defect charge-state transition levels, single-particle defect states, and defect 
concentrations 
 
Table S1. Defect charge-state transition levels (in unit of eV) referenced to the 
VBM of CaO. Included only the transition levels in the CaO band gap. 
 

Defect species 𝜖(𝑞/𝑞!) 
𝑉() (2+/+) 1.33, (+/0) 1.62, (0/−) 1.81, (−/2−) 2.11 
𝑉! (2+/+) 3.20, (+/0) 5.06 
Ca! (4+/3+) 0.53, (3+/2+) 3.87, (2+/+) 6.07 
O() (+/0) 0.89, (0/2−) 2.37, (2−/4−) 4.94 
Ca. (2+/+) 6.43, (+/0) 6.92 
O. (2+/+) 0.85, (+/0) 1.38, (0/2−) 4.79 
H. (+/−) 5.0 
H! (+/0) 7.085 

 

 
FIG. S6. Single-particle defect states for 𝑉" in the (a) 0, (b) 1+, and (c) +2 charge 
states in the band gap of CaO. 
 

 
FIG. S7. Single-particle defect states for 𝑉#$ in the (a) 0 and (b) 1− charge states 
in the band gap of CaO. 



 
FIG. S8. Single-particle defect states for H" in the neutral charge state in the band 
gap of CaO. 
 
Table S2. Defect concentrations in O-poor CaO grown at 1000 K and rapidly 
quenched to 300 K. The results correspond to the defect formation energies in 
Fig. 1(a) in the main text. Other defect species have negligible concentrations. 
Without the quenching, the 𝑉"% concentration would be 1.20 × 10&'	cm(). 
 

Defect species Concentration (cm()) 
𝑉()+, 5.59 × 10&* 
𝑉!' 5.06 × 10&+ 
𝑉!/ 1.12 × 10&) 
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